Temperature Effect on Moving Water Droplets at the Channel of ‎PEMFC by Multi-component Multiphase Lattice Boltzmann Method

ساخت وبلاگ

[1] Wu, J., X.Z. Yuan, J.J. Martin, H. Wang, J. Zhang, J. Shen, S. Wu, and W. Merida, A review of PEM fuel cell durability: Degradation mechanisms and mitigation strategies, Journal of Power Sources, 184(1), 2008, 104-119.

[2] Jiao, K. and M. Ni, Challenges and opportunities in modelling of proton exchange membrane fuel cells (PEMFC), 2017.

[3] Jiao, K. and X. Li, Water transport in polymer electrolyte membrane fuel cells, Progress in Energy and Combustion Science, 37(3), 2011, 221-291.

[4] Yousfi-Steiner, N., P. Moçotéguy, D. Candusso, D. Hissel, A. Hernandez, and A. Aslanides, A review on PEM voltage degradation associated with water management: Impacts, influent factors and characterization, Journal of Power Sources, 183(1), 2008, 260-274.

[5] Kramer, D., J. Zhang, R. Shimoi, E. Lehmann, A. Wokaun, K. Shinohara, and G.G. Scherer, In situ diagnostic of two-phase flow phenomena in polymer electrolyte fuel cells by neutron imaging: Part A. Experimental, data treatment, and quantification, Electrochimica Acta, ‎‎50(13), 2005, 2603-2614.

[6] Hickner, M.A., N. Siegel, K. Chen, D. McBrayer, D.S. Hussey, D.L. Jacobson, and M. Arif, Real-time imaging of liquid water in an operating proton exchange membrane fuel cell, Journal of The Electrochemical Society, 153(5), 2006, A902-A908.

[7] Kumbur, E., K. Sharp, and M. Mench, Liquid droplet behavior and instability in a polymer electrolyte fuel cell flow channel, Journal of Power Sources, 161(1), 2006, 333-345.

[8] Yu, L.-J., W.-C. Chen, M.-J. Qin, and G.-P. Ren, Experimental research on water management in proton exchange membrane fuel cells, Journal of Power Sources, 189(2), 2009, 882-887.

[9] Hussaini, I.S. and C.-Y. Wang, Visualization and quantification of cathode channel flooding in PEM fuel cells, Journal of Power Sources, 187(2), 2009, 444-451.

[10] Zhang, F., X. Yang, and C. Wang, Liquid water removal from a polymer electrolyte fuel cell, Journal of the Electrochemical Society, 153(2), 2006, A225-A232.

[11] Nilsson, M.A. and J.P. Rothstein, The effect of contact angle hysteresis on droplet coalescence and mixing, Journal of Colloid and Interface Science, 363(2), 2011, 646-654.

[12] Hou, Y., G. Zhang, Y. Qin, Q. Du, and K. Jiao, Numerical simulation of gas liquid two-phase flow in anode channel of low-temperature fuel cells, Internatio6nal Journal of Hydrogen Energy, 42(5), 2017, 3250-3258.

[13] Zhu, X., P. Sui, and N. Djilali, Three-dimensional numerical simulations of water droplet dynamics in a PEMFC gas channel, Journal of Power Sources, 181(1), 2008, 101-115.

[14] Kim, H.-Y., S. Jeon, M. Song, and K. Kim, Numerical simulations of water droplet dynamics in hydrogen fuel cell gas channel, Journal of Power Sources, 246, 2014, 679-695.

[15] Quan, P., B. Zhou, A. Sobiesiak, and Z. Liu, Water behavior in serpentine micro-channel for proton exchange membrane fuel cell cathode, Journal of Power Sources, 152, 2005, 131-145.

[16] Jiao, K., B. Zhou, and P. Quan, Liquid water transport in straight micro-parallel-channels with manifolds for PEM fuel cell cathode, Journal of Power Sources, 157(1), 2006, 226-243.

[17] Zhu, X., P. Sui, and N. Djilali, Dynamic behaviour of liquid water emerging from a GDL pore into a PEMFC gas flow channel, Journal of Power Sources, 172(1), 2007, 287-295.

[18] Li, Q., K.H. Luo, Q. Kang, Y. He, Q. Chen, and Q. Liu, Lattice Boltzmann methods for multiphase flow and phase-change heat transfer, Progress in Energy and Combustion Science, 52, 2016, 62-105.

[19] Chen, L., Q. Kang, Y. Mu, Y.-L. He, and W.-Q. Tao, A critical review of the pseudopotential multiphase lattice Boltzmann model: Methods and applications, International Journal of Heat and Mass Transfer, 76, 2014, 210-236.

[20] Li, M., C. Huber, Y. Mu, and W. Tao, Lattice Boltzmann simulation of condensation in the presence of noncondensable gas, International Journal of Heat and Mass Transfer, 109, 2017, 1004-1013.

[21] Li, Q., K. Luo, and X. Li, Lattice Boltzmann modeling of multiphase flows at large density ratio with an improved pseudopotential model, Physical Review E, 87(5), 2013, 053301.

[22] Qian, Y.-H., D. d'Humières, and P. Lallemand, Lattice BGK models for Navier-Stokes equation, EPL (Europhysics Letters), 17(6), 1992, 479.

[23] Huang, H., Z. Li, S. Liu, and X.Y. Lu, Shan‐and‐Chen‐type multiphase lattice Boltzmann study of viscous coupling effects for two‐phase flow in porous media, International Journal for Numerical Methods in Fluids, 61(3), 2009, 341-354.

[24] Han, B., J. Yu, and H. Meng, Lattice Boltzmann simulations of liquid droplets development and interaction in a gas channel of a proton exchange membrane fuel cell, Journal of Power Sources, 202, 2012, 175-183.

[25] Salah, Y.B., Y. Tabe, and T. Chikahisa, Two phase flow simulation in a channel of a polymer electrolyte membrane fuel cell using the lattice Boltzmann method, Journal of Power Sources, 199, 2012, 85-93.

[26] Hao, L. and P. Cheng, Lattice Boltzmann simulations of liquid droplet dynamic behavior on a hydrophobic surface of a gas flow channel, Journal of Power Sources, 190(2), 2009, 435-446.

[27] Salah, Y.B., Y. Tabe, and T. Chikahisa, Gas channel optimisation for PEM fuel cell using the lattice Boltzmann method, Energy Procedia, 28, 2012, 125-133.

[28] Han, B. and H. Meng, Lattice Boltzmann simulation of liquid water transport in turning regions of serpentine gas channels in proton exchange membrane fuel cells, Journal of Power Sources, 217, 2012, 268-279.

[29] Amara, M.E.A.B. and S.B. Nasrallah, Numerical simulation of droplet dynamics in a proton exchange membrane (PEMFC) fuel cell micro-channel, International Journal of Hydrogen Energy, 40(2), 2015, 1333-1342.

[30] Wu, J. and J.-J. Huang, Dynamic behaviors of liquid droplets on a gas diffusion layer surface: Hybrid lattice Boltzmann investigation, Journal of Applied Physics, 118(4), 2015, 044902.

[31] Li, Q., K.H. Luo, and X. Li, Forcing scheme in pseudopotential lattice Boltzmann model for multiphase flows, Physical Review E, ‎‎86(1), 2012, 016709.

[32] Wu, Y., N. Gui, X. Yang, J. Tu, and S. Jiang, Improved stability strategies for pseudo-potential models of lattice Boltzmann simulation of multiphase flow, International Journal of Heat and Mass Transfer, 125, 2018, 66-81.

[33] Xu, A., T. Zhao, L. An, and L. Shi, A three-dimensional pseudo-potential-based lattice Boltzmann model for multiphase flows with large density ratio and variable surface tension, International Journal of Heat and Fluid Flow, 56, 2015, 261-271.

[34] Stiles, C.D. and Y. Xue, High density ratio lattice Boltzmann method simulations of multicomponent multiphase transport of H2O in air, Computers & Fluids, 131, 2016, 81-90.

[35] Chen, L., Q. Kang, Q. Tang, B.A. Robinson, Y.-L. He, and W.-Q. Tao, Pore-scale simulation of multicomponent multiphase reactive transport with dissolution and precipitation, International Journal of Heat and Mass Transfer, 85, 2015, 935-949.

[36] Bao, J. and L. Schaefer, Lattice Boltzmann equation model for multi-component multi-phase flow with high density ratios, Applied Mathematical Modelling, 37(4), 2013, 1860-1871.

[37] Zhu, W., M. Wang, and H. Chen, Study on multicomponent pseudo-potential model with large density ratio and heat transfer, International Communications in Heat and Mass Transfer, 87, 2017, 183-191.

[38] Hou, Y., H. Deng, Q. Du, and K. Jiao, Multi-component multi-phase lattice Boltzmann modeling of droplet coalescence in flow channel of fuel cell, Journal of Power Sources, 393, 2018, 83-91.

[39] Jithin, M., M.K. Das, and A. De, Phase Field Lattice Boltzmann Simulations of Water Droplet Transport in a Proton Exchange Membrane Fuel Cell Flow Channel, International Journal of Energy for a Clean Environment, 22(3), 2021, 43-76.

[40] Yang, J., L. Fei, X. Zhang, X. Ma, K.H. Luo, and S. Shuai, Dynamic behavior of droplet transport on realistic gas diffusion layer with inertial effect via a unified lattice Boltzmann method, International Journal of Hydrogen Energy, 46(66), 2021, 33260-33271.

[41] Yu, Z. and L.-S. Fan, Multirelaxation-time interaction-potential-based lattice Boltzmann model for two-phase flow, Physical Review E, ‎‎82(4), 2010, 046708.

[42] Succi, S., The lattice Boltzmann equation: for fluid dynamics and beyond, Oxford University Press, 2011.

[43] McCracken, M.E. and J. Abraham, Multiple-relaxation-time lattice-Boltzmann model for multiphase flow, Physical Review E, 71(3), 2005, 036701.

[44] Guo, Z. and C. Zheng, Analysis of lattice Boltzmann equation for microscale gas flows: relaxation times, boundary conditions and the Knudsen layer, International Journal of Computational Fluid Dynamics, 22(7), 2008, 465-473.

[45] Zheng, L., B. Shi, and Z. Guo, Multiple-relaxation-time model for the correct thermohydrodynamic equations, Physical Review E, ‎‎78(2), 2008, 026705.

[46] Sega, M., M. Sbragaglia, S.S. Kantorovich, and A.O. Ivanov, Mesoscale structures at complex fluid–fluid interfaces: a novel lattice Boltzmann/molecular dynamics coupling, Soft Matter, 9(42), 2013, 10092-10107.

[47] Sbragaglia, M., R. Benzi, L. Biferale, S. Succi, K. Sugiyama, and F. Toschi, Generalized lattice Boltzmann method with multirange pseudopotential, Physical Review E, 75(2), 2007, 026702.

[48] Yu, Z., X. Shan, and L. Fan. An improved multi-component lattice Boltzmann method for simulation of gas–liquid flows with high density ratio, AICHE Annual Meeting, 2007.

[49] Liu, M., Z. Yu, T. Wang, J. Wang, and L.-S. Fan, A modified pseudopotential for a lattice Boltzmann simulation of bubbly flow, Chemical Engineering Science, 65(20), 2010, 5615-5623.

[50] Shan, X., Analysis and reduction of the spurious current in a class of multiphase lattice Boltzmann models, Physical Review E, ‎‎73(4), 2006, 047701.

[51] Yu, Z., A novel lattice Boltzmann method for direct numerical simulation of multiphase flows, The Ohio State University, 2009.

[52] Yuan, P. and L. Schaefer, Equations of state in a lattice Boltzmann model, Physics of Fluids, 18(4), 2006, 042101.

[53] Hu, A., L. Li, S. Chen, Q. Liao, and J. Zeng, On equations of state in pseudo-potential multiphase lattice Boltzmann model with large density ratio, International Journal of Heat and Mass Transfer, 67, 2013, 159-163.

[54] Sbragaglia, M. and D. Belardinelli, Interaction pressure tensor for a class of multicomponent lattice Boltzmann models, Physical Review E, 88(1), 2013, 013306.

[55] Yang, Z., Lattice Boltzmann outflow treatments: Convective conditions and others, Computers & Mathematics with Applications, ‎‎65(2), 2013, 160-171.

[56] Zou, Q. and X. He, On pressure and velocity boundary conditions for the lattice Boltzmann BGK model, Physics of Fluids, 9(6), 1997, ‎‎1591-1598.

[57] Kim, J.H. and W.T. Kim, Numerical investigation of gas-liquid two-phase flow inside PEMFC gas channels with rectangular and trapezoidal cross sections, Energies, 11(6), 2018, 1403.

بی مایند...
ما را در سایت بی مایند دنبال می کنید

برچسب : نویسنده : مهندس نقوی bmined بازدید : 62 تاريخ : يکشنبه 28 خرداد 1402 ساعت: 22:04