Electrochemical and Mechanical Properties of Ni/g-C3N4 ‎Nanocomposite Coatings with Enhanced Corrosion Protective ‎Properties: A Case Study for Modeling the Corrosion Resistance ‎by ANN and ANFIS Models

ساخت وبلاگ

[1] Olia, H., Ghobadi, M., Danaee, I. and Onsori, S., Effect of number of layers on erosion, corrosion, and wear resistance of multilayer Cr–N/Cr–Al–N coatings on AISI 630 stainless steel, Materials and Corrosion, 71(8), 2018, 1361-1374.

[2] Kumaraguru, S., Kumar, G.G., Shanmugan, S., Mohan, S., Gnanamuthu, R.M., Enhanced texture and microhardness of the nickel surface using Bi2O3 particles via electrodeposition technique for engineering application, Journal of Alloys and Compounds, 753, 2018, 740-747.

[3] Nayana, K.O., Ranganatha, S., Shubha, H.N., Pandurangappa, M., Effect of sodium lauryl sulphate on microstructure, corrosion resistance and microhardness of electrodeposition of Ni–Co3O4 composite coatings, Transactions of Nonferrous Metals Society of China, 29(11), 2019, 2371-2383.

[4] Raghavendra, C.R., Basavarajappa, S., Sogalad, I., Saunshi, V.K., Study on surface roughness parameters of nano composite coatings prepared by electrodeposition process, Materials Today: Proceedings, 38, 2021, 3110-3115.

[5] Li, B.S., Huan, Y.X., Luo, H., Zhang, W.W., Electrodeposition and properties of Ni–B/SiC nanocomposite coatings, Surface Engineering, 35(2), 2019, 109-119.

[6] Li, B., Zhang, W., Huan, Y., Dong, J., Synthesis and characterization of Ni-B/Al2O3 nanocomposite coating by electrodeposition using trimethylamine borane as boron precursor, Surface and Coatings Technology, 337, 2018, 186-197.

[7] Baghery, P., Farzam, M., Mousavi, A.B., Hosseini, M., Ni–TiO2 nanocomposite coating with high resistance to corrosion and wear, Surface and Coatings Technology, 204(23), 2010, 3804-3810.

[8] Pingale, A.D., Belgamwar, S.U., Rathore, J.S., Effect of graphene nanoplatelets addition on the mechanical, tribological and corrosion properties of Cu–Ni/Gr nanocomposite coatings by electro-co-deposition method, Transactions of the Indian Institute of Metals, 73(1), 2020, 99-107.

[9] Shelke, A.R., Balwada, J., Sharma, S., Pingale, A.D., Belgamwar, S.U., Rathore, J.S., Development and characterization of Cu-Gr composite coatings by electro-co-deposition technique, Materials Today: Proceedings, 28, 2020, 2090-2095.

[10] Zhang, L., Ou, M., Yao, H., Li, Z., Qu, D., Liu, F., Wang, J., Li, Z., Enhanced supercapacitive performance of graphite-like C3N4 assembled with NiAl-layered double hydroxide, Electrochimica Acta, 186, 2015, 292-301.

[11] Fayyad, E.M., Abdullah, A.M., Hassan, M.K., Mohamed, A.M., Wang C, Jarjoura, G., Farhat, Z., Synthesis, characterization, and application of novel Ni-P-carbon nitride nanocomposites, Coatings, 8(1), 2018, 37.

[12] Li, C., Cao, C.B., Zhu, H.S., Graphitic carbon nitride thin films deposited by electrodeposition, Materials Letters, 58(12-13), 2004, 1903-1906.

[13] Fayyad, E.M., Abdullah, A.M., Mohamed, A.M., Jarjoura, G., Farhat, Z., Hassan, M.K., Effect of electroless bath composition on the mechanical, chemical, and electrochemical properties of new NiP–C3N4 nanocomposite coatings, Surface and Coatings Technology, 362, 2019, 239-251

[14] Yang, G., Chen, T., Feng, B., Weng, J., Duan, K., Wang, J., Lu, X., Improved corrosion resistance and biocompatibility of biodegradable magnesium alloy by coating graphite carbon nitride (g-C3N4), Journal of Alloys and Compounds, 770, 2018, 823-830.

[15] Pourhashem, S., Duan, J., Guan, F., Wang, N., Gao, Y., Hou, B., New effects of TiO2 nanotube/g- C3N4 hybrids on the corrosion protection performance of epoxy coatings, Journal of Molecular Liquids, 317, 2020, 114214.

[16] Yan, H., Li, J., Zhang, M., Zhao, Y., Feng, Y., Zhang, Y., Enhanced corrosion resistance and adhesion of epoxy coating by two-dimensional graphite-like g-C3N4 nanosheets, Journal of Colloid and Interface Science, 579, 2020, 152-161.

[17] Chen, C., He, Y., Xiao, G., Zhong, F., Xia, Y., Wu, Y., Graphic C3N4-assisted dispersion of graphene to improve the corrosion resistance of waterborne epoxy coating, Progress in Organic Coatings, 139, 2020, 105448.

[18] Wu, L., Zhang, Z., Yang, M., Yuan, J., Li, P., Guo, F., Men, X., One-step synthesis of g-C3N4 nanosheets to improve tribological properties of phenolic coating, Tribology International, 132, 2019, 221-227.

[19] Golafshani, E.M., Behnood, A., Arashpour, M., Predicting the compressive strength of normal and High-Performance Concretes using ANN and ANFIS hybridized with Grey Wolf Optimizer, Construction and Building Materials, 232, 2020, 117266.

[20] Vakili, M., Yahyaei, M., Ramsay, J., Aghajannezhad, P., Paknezhad, B., Adaptive neuro-fuzzy inference system modeling to predict the performance of graphene nanoplatelets nanofluid-based direct absorption solar collector based on experimental study, Renewable Energy, 163, 2021, 807-824.

[21] Sampath, K.H.S.M., Perera, M.S.A., Ranjith, P.G., Matthai, S.K., Tao, X., Wu, B., Application of neural networks and fuzzy systems for the intelligent prediction of CO2-induced strength alteration of coal, Measurement, 135, 2019, 47-60.

[22] Khalaj, O., Ghobadi, M., Zarezadeh, A., Saebnoori, E., Jirková, H., Chocholaty, O., Svoboda, J., Potential role of machine learning techniques for modeling the hardness of OPH steels, Materials Today Communications, 26, 2021, 101806.

[23] Nesfchi, M.M., Pirbazari, A.E., Saraei, F.E.K., Rojaee, F., Mahdavi, F., Faal Rastegar, S.A., Fabrication of plasmonic nanoparticles/cobalt doped TiO2 nanosheets for degradation of tetracycline and modeling the process by artificial intelligence techniques, Materials Science in Semiconductor Processing, 122, 2021, 105465.

[24] Hosseinzadeh, A., Zhou, J.L., Altaee, A., Baziar, M., Li, X., Modeling water flux in osmotic membrane bioreactor by adaptive network-based fuzzy inference system and artificial neural network, Bioresource Technology, 310, 2020, 123391.

[25] Hernández-Julio, Y.F., Prie6to-Guevara, M.J., Nieto-Bernal, W., Fuzzy clustering and dynamic tables for knowledge discovery and decision-making: Analysis of the reproductive performance of the marine copepod Cyclopina sp, Aquaculture, 523, 2020, 735183.

[26] Ghobadi, M., Zaarei, D., Naderi, R., Asadi, N., Seyedi, S.R., Avard, M.R., Improvement the protection performance of lanolin based temporary coating using benzotriazole and cerium (III) nitrate: Combined experimental and computational analysis, Progress in Organic Coatings, 151, 2021, 106085.

[27] Xu, Y., Zhu, Y., Xiao, G., Ma, C., Application of artificial neural networks to predict corrosion behavior of Ni–SiC composite coatings deposited by ultrasonic electrodeposition, Ceramics International, 40(4), 2014, 5425-5430.

[28] Gan, H., Liu, G., Shi, C., Tang, R., Xiong, Y., Liu, Y., Liu, H., Comparison of three artificial neural networks for predict the electrodeposition of nano-silver film, Materials Today Communications, 26, 2021, 101950.

[29] Li, X., Zhu, Y., Xiao, G., Application of artificial neural networks to predict sliding wear resistance of Ni–TiN nanocomposite coatings deposited by pulse electrodeposition, Ceramics International, 40(8), 2014, 11767-11772.

[30] Yaghoot-Nezhad, A., Moradi, M., Rostami, M., Danaee, I., Khosravi-Nikou, M.R., Dual Z-Scheme CuO-ZnO@ Graphitic Carbon Nitride Ternary Nanocomposite with Improved Visible Light-Induced Catalytic Activity for Ultrasound-Assisted Photocatalytic Desulfurization, Energy & Fuels, 34(11), 2020, 13588-13605.

[31] Moradi, M., Hasanvandian, F., Isari, A.A., Hayati, F., Kakavandi, B., Setayesh, S.R., CuO and ZnO co-anchored on g-C3N4 nanosheets as an affordable double Z-scheme nanocomposite for photocatalytic decontamination of amoxicillin, Applied Catalysis B: Environmental, 285, 2021, 119838.

[32] Franco, D.S., Duarte, F.A., Salau, N.P.G., Dotto, G.L., Analysis of indium (III) adsorption from leachates of LCD screens using artificial neural networks (ANN) and adaptive neuro-fuzzy inference systems (ANIFS), Journal of Hazardous Materials, 384, 2020, 121137.

[33] Zhou, Q., Wang, F., Zhu, F., Estimation of compressive strength of hollow concrete masonry prisms using artificial neural networks and adaptive neuro-fuzzy inference systems, Construction and Building Materials, 125, 2016, 417-426.

[34] Xu, J., Zhao, X., Yu, Y., Xie, T., Yang, G., Xue, J., Parametric sensitivity analysis and modelling of mechanical properties of normal-and high-strength recycled aggregate concrete using grey theory, multiple nonlinear regression and artificial neural networks, Construction and Building Materials, 211, 2019, 479-491.

[35] Reddy, N.S., Krishnaiah, J., Hong, S.G., Lee, J.S., Modeling medium carbon steels by using artificial neural networks, Materials Science and Engineering: A, 508(1-2), 2009, 93-105.

[36] Gupta, T., Patel, K.A., Siddique, S., Sharma, R.K., Chaudhary, S., Prediction of mechanical properties of rubberised concrete exposed to elevated temperature using ANN, Measurement, 147, 2019, 106870.

[37] Sugeno, M., Kang, G.T., Structure identification of fuzzy model, Fuzzy Sets and Systems, 28(1), 1998, 15-33.

[38] Jang, J.S., ANFIS: adaptive-network-based fuzzy inference system, IEEE Transactions on Systems, Man, and Cybernetics, 23(3), 1993, 665-685.

[39] Gerek, I.H., House selling price assessment using two different adaptive neuro-fuzzy techniques, Automation in Construction, 41, 2014, 33-39.

[40] Abadi, S.N.R., Mehrabi, M., Meyer, J.P., Prediction and optimization of condensation heat transfer coefficients and pressure drop of R134a inside an inclined smooth tube, International Journal of Heat and Mass Transfer, 124, 2018, 953-966.

[41] Hasanvandian, F., Moradi, M., Samani, S.A., Kakavandi, B., Setayesh, S.R., Noorisepehr, M., Effective promotion of g–C3N4 photocatalytic performance via surface oxygen vacancy and coupling with bismuth-based semiconductors towards antibiotics degradation, Chemosphere, 287, 2022, 132273.

[42] Xu, J.H., Ye, S., Di Ding, C., Tan, L.H., Fu, J.J., Autonomous self-healing supramolecular elastomer reinforced and toughened by graphitic carbon nitride nanosheets tailored for smart anticorrosion coating application, Journal of Materials Chemistry A, 6(14), 2018, 5887-5898.

[43] Li, C., Cao, C.B., Zhu, H.S., Graphitic carbon nitride thin films deposited by electrodeposition, Materials Letters, 58(12-13), 2004, 1903-1906.

[44] Bai, X., Zong, R., Li, C., Liu, D., Liu, Y., Zhu, Y., Enhancement of visible photocatalytic activity via Ag@ C3N4 core–shell plasmonic composite, Applied Catalysis B: Environmental, 147, 2014, 82-91.

[45] Benea, L., Danaila, E., Celis, J.P., Influence of electro-co-deposition parameters on nano-TiO2 inclusion into nickel matrix and properties characterization of nanocomposite coatings obtained, Materials Science and Engineering: A, 610, 2014, 106-115.

[46] Yasin, G., Khan, M.A., Arif, M., Shakeel, M., Hassan, T.M., Khan, W.Q., Zuo, Y., Synthesis of spheres-like Ni/graphene nanocomposite as an efficient anti-corrosive coating; effect of graphene content on its morphology and mechanical properties, Journal of Alloys and Compounds, 755, 2018, 79- 88.

[47] Beltowska-Lehman, E., Bigos, A., Indyka, P., Chojnacka, A., Drewienkiewicz, A., Zimowski, S., Szczerba, M.J., Optimisation of the electrodeposition process of Ni-W/ZrO2 nanocomposites, Journal of Electroanalytical Chemistry, 813, 2018, 39-51.

[48] Rasooli, A., Safavi, M.S., Babaei, F., Ansarian, A., Electrodeposited Ni–Fe–Cr2O3 nanocomposite coatings: A survey of influences of Cr2O3 nanoparticles loadings in the electrolyte, Journal of Alloys and Compounds, 822, 2020, 153725.

[49] Demir, M., Kanca, E., Karahan, I.H., Characterization of electrodeposited Ni–Cr/hBN composite coatings, Journal of Alloys and Compounds, 844, 2020, 155511.

[50] Ogihara, H., Wang, H., Saji, T., Electrodeposition of Ni–B/SiC composite films with high hardness and wear resistance, Applied Surface Science, 296, 2014, 108-113.

[51] Li, B., Zhang, W., Huan, Y., Dong, J., Synthesis and characterization of Ni-B/Al2O3 nanocomposite coating by electrodeposition using trimethylamine borane as boron precursor, Surface and Coatings Technology, 337, 2018, 186-197.

[52] Zhao, K., Shen, L., Qiu, M., Tian, Z., Jiang, W., Preparation and properties of nanocomposite coatings by pulsed current-jet electrodeposition, International Journal of Electrochemical Science, 12, 2017, 8578-8590.

[53] Maharana, H.S., Mondal, K., Manifestation of Hall–Petch breakdown in nanocrystalline electrodeposited Ni-MoS2 coating and its structure dependent wear resistance behavior, Surface and Coatings Technology, 2021, 410, 126950.

[54] Xue, Z., Lei, W., Wang, Y., Qian, H., Li, Q., Effect of pulse duty cycle on mechanical properties and microstructure of nickel-graphene composite coating produced by pulse electrodeposition under supercritical carbon dioxide, Surface and Coatings Technology, 325, 2017, 417-428.

[55] Smith, G.N., Probability and statistics in civil engineering, Collins Professional and Technical Books, 244, 1986.

[56] Gandomi, A.H., Mohammadzadeh, D., Pérez-Ordóñez, J.L., Alavi, A.H., Linear genetic programming for shear strength prediction of reinforced concrete beams without stirrups, Applied Soft Computing, 19, 2014, 112-120.

[57] Roy, P.P., Roy, K., On some aspects of variable selection for partial least squares regression models, QSAR & Combinatorial Science, 27(3), 2008, 302-313.

[58] Tavana, M., Fallahpour, A., Di Caprio, D., Santos-Arteaga, F.J., A hybrid intelligent fuzzy predictive model with simulation for supplier evaluation and selection, Expert Systems with Applications, 61, 2016, 129-144.

[59] Vellaichamy, B., Periakaruppan, P., Catalytic hydrogenation performance of an in situ assembled Au@ gC 3 N 4–PANI nanoblend: synergistic inter-constituent interactions boost the catalysis, New Journal of Chemistry, 41(15), 2017, 7123-7132.

[60] Liu, L., Qi, Y., Lu, J., Lin, S., An, W., Liang, Y., Cui, W., A stable Ag3PO4@ g-C3N4 hybrid core@ shell composite with enhanced visible light photocatalytic degradation, Applied Catalysis B: Environmental, 183, 2016, 133-141.

[61] Komatsu, T., The first synthesis and characterization of cyameluric high polymers, Macromolecular Chemistry and Physics, 202, 2001, 19–25.

[62] Giannakopoulou, T., Papailias, I., Todorova, N., Boukos, N., Liu Y., Yu, J., Trapalis C., Tailoring the energy band gap and edges’ potentials of g-C3N4/TiO2 composite photocatalysts for NOx removal, Chemical Engineering Journal, 310, 2017, 571-580.

[63] Aal, A.A., Gobran, H.A., Muecklich, F., Electrodeposition of Ni–RuAl composite coating on steel surface, Journal of Alloys and Compounds, 473(1-2), 2009, 250-254.

[64] Khalaj, O., Ghobadi, M., Saebnoori, E., Zarezadeh, A., Shishesaz, M., Mašek, B., Štadler, C., Svoboda, J., Development of Machine Learning Models to Evaluate the Toughness of OPH Alloys, Materials, 14(21), 2021, 6713.

بی مایند...
ما را در سایت بی مایند دنبال می کنید

برچسب : نویسنده : مهندس نقوی bmined بازدید : 60 تاريخ : يکشنبه 28 خرداد 1402 ساعت: 22:04