Magnetized Bi-convective Nanofluid Flow and Entropy ‎Production Using Temperature-sensitive Base Fluid Properties:‎ A Unique Approach

ساخت وبلاگ

[1] Wang, C.Y., Boundary layers on rotating cones, discs and axisymmetric surfaces with a concentrated heat source, Acta Mechanica, 81(3), 1990, 245-251.

[2] Yih, K.A., Mixed convection about a cone in a porous medium: the entire regime, International Communications in Heat and Mass Transfer, 26(7), 1999, 1041-1050.

[3] Ravindran, R., Roy, S., Momoniat, E., Effects of injection (suction) on a steady mixed convection boundary layer flow over a vertical cone, International Journal of Numerical Methods for Heat & Fluid Flow, 19(3/4), 2009, 432 - 444.

[4] Daskalakis, J.E., Mixed free and forced convection in the incompressible boundary layer along a rotating vertical cylinder with fluid injection, International Journal of Energy Research, 17(8), 1993, 689-695.

[5] Ravindran, R. and Ganapathirao, M., Non-uniform slot suction/injection into mixed convection boundary layer flow over vertical cone, Applied Mathematics and Mechanics, 34(11), 2013, 1327-1338.

[6] Chamkha, A.J. and Rashad, A.M., Natural convection from a vertical permeable cone in a nanofluid saturated porous media for uniform heat and nanoparticles volume fraction fluxes, International Journal of Numerical Methods for Heat & Fluid Flow, 22(8), 2012, 1073- 1085.

[7] Nadeem, S., Theoretical Investigation of MHD nanofluid flow over a rotating cone: an optimal solutions, Information Sciences Letters, 3(2), 2014, 55-62.

[8] Nadeem, S. and Saleem, S., Analytical study of third grade fluid over a rotating vertical cone in the presence of nanoparticles, International Journal of Heat and Mass Transfer, 85, 2015, 1041-1048.

[9] Ghalambaz, M., Behseresht, A., Behseresht, J. and Chamkha, A., Effects of nanoparticles diameter and concentration on natural convection of the Al2O3–water nanofluids considering variable thermal conductivity around a vertical cone in porous media, Advanced Powder Technology, 26(1), 2015, 224-235.

[10] Reddy, J.V.R., Sugunamma, V., Sandeep, N. and Chakravarthula, S.K., Chemically reacting MHD dusty nanofluid flow over a vertical cone with non-uniform heat source/sink, Walailak Journal of Science and Technology (WJST), 14(2), 2017, 141-156.

[11] Sandeep, N. and Reddy, M.G., Heat transfer of nonlinear radiative magnetohydrodynamic Cu-water nanofluid flow over two different geometries, Journal of Molecular Liquids, 225, 2017, 87-94.

[12] Prabhavathi, B., Reddy, P.S. and Vijaya, R.B., Heat and mass transfer enhancement of SWCNTs and MWCNTs based Maxwell nanofluid flow over a vertical cone with slip effects, Powder Technology, 340, 2018, 253-263.

[13] Hanif, H., Khan, I. and Shafie, S., Heat transfer exaggeration and entropy analysis in magneto-hybrid nanofluid flow over a vertical cone: a numerical study, Journal of Thermal Analysis & Calorimetry, 141(5), 2020, 2001-2017.

[14] Zeeshan, A., Ellahi, R. and Hassan, M., Magnetohydrodynamic flow of water/ethylene glycol based nanofluids with natural convection through a porous medium, The European Physical Journal Plus, 129(12), 2014, 1-10.

[15] Reddy, P.S. and Chamkha, A.J., Influence of size, shape, type of nanoparticles, type and temperature of the base fluid on natural convection MHD of nanofluids, Alexandria Engineering Journal, 55(1), 2016, 331-341.

[16] Reddy, M.G. and Sandeep, N., Computational modelling and analysis of heat and mass transfer in MHD flow past the upper part of a paraboloid of revolution, The European Physical Journal Plus, 132(5), 2017, 1-18.

[17] Dogonchi, A.S., Asghar, Z. and Waqas, M., CVFEM simulation for Fe3O4-H2O nanofluid in an annulus between two triangular enclosures subjected to magnetic field and thermal radiation, International Communications in Heat and Mass Transfer, 112, 2020, 104449.

[18] Dogonchi, A.S., Waqas, M., Seyyedi, S.M., Hashemi-Tilehnoee, M. and Ganji, D.D., A modified Fourier approach for analysis of nanofluid heat generation within a semi-circular enclosure subjected to MFD viscosity, International Communications in Heat and Mass Transfer, 111, 2020, 104430.

[19] Sadeghi, M.S., Tayebi, T., Dogonchi, A.S., Nayak, M.K. and Waqas, M., Analysis of thermal behavior of magnetic buoyancy-driven flow in ferrofluid–filled wavy enclosure furnished with two circular cylinders, International Communications in Heat and Mass Transfer, 120, 2021, 104951.

[20] Reddy, P.S. and Chamkha, A., Heat and mass transfer analysis in natural convection flow of nanofluid over a vertical cone with chemical reaction, International Journal of Numerical Methods for Heat & Fluid Flow, 27(1), 2017, 2-22.

[21] Raju, C.S.K., Sandeep, N. and Sugunamma, V., Unsteady magneto-nanofluid flow caused by a rotating cone with temperature dependent viscosity: a surgical implant application, Journal of Molecular Liquids, 222, 2016, 1183-1191.

[22] Noor, N.F.M., Abbasbandy, S. and Hashim, I., Heat and mass transfer of thermophoretic MHD flow over an inclined radiate isothermal permeable surface in the presence of heat source/sink, International Journal of Heat and Mass Transfer, 55(7-8), 2012, 2122-2128.

[23] Dogonchi, A.S., Waqas, M., Gulzar, M.M., Hashemi-Tilehnoee, M., Seyyedi, S.M. and Ganji, D.D., Simulation of Fe3O4-H2O nanoliquid in a triangular enclosure subjected to Cattaneo–Christov theory of heat conduction, International Journal of Numerical Methods for Heat & Fluid Flow, 29(11), 2019, 4430-4444.

[24] Turkyilmazoglu, M., Exact analytical solutions for heat and mass transfer of MHD slip flow in nanofluids, Chemical Engineering Science, 84, 2012, 182-187.

[25] Mondal, H., Mishra, S., Kundu, P.K. and Sibanda, P., Entropy generation of variable viscosity and thermal radiation on magneto nanofluid flow with dusty fluid, Journal of Applied and Computational Mechanics, 6(1), 2020, 171-182.

[26] Sheikholeslami, M., Bandpy, M.G., Ellahi, R., Hassan, M. and Soleimani, S., Effects of MHD on Cu–water nanofluid flow and heat transfer by means of CVFEM, Journal of Magnetism and Magnetic Materials, 349, 2014, 188-200.

[27] Narender, G., Govardhan, K. and Sreedhar Sarma, G., MHD Casson nanofluid past a stretching sheet with the effects of viscous dissipation, chemical reaction and heat source/sink, Journal of Applied and Computational Mechanics, 2019, doi: 10.22055/JACM.2019.14804.

[28] Hashemi-Tilehnoee, M., Dogonchi, A.S., Seyyedi, S.M. and Sharifpur, M., Magneto-fluid dynamic and second law analysis in a hot porous cavity filled by nanofluid and nano-encapsulated phase change material suspension with different layout of cooling channels, Journal of Energy Storage, 31, 2020, 101720.

[29] Mondal, S., Dogonchi, A.S., Tripathi, N., Waqas, M., Seyyedi, S.M., Hashemi-Tilehnoee, M. and Ganji, D.D., A theoretical nanofluid analysis exhibiting hydromagnetics characteristics employing CVFEM, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(1), 2020, 1-12.

[30] Chamkha, A.J., Abbasbandy, S., Rashad, A.M. and Vajravelu, K., Radiation effects on mixed convection about a cone embedded in a porous medium filled with a nanofluid, Meccanica, 48(2), 2013, 275-285.

[31] Haroun, N.A., Mondal, S. and Sibanda, P., Hydromagnetic nanofluids flow through a porous medium with thermal radiation, chemical reaction and viscous dissipation using the spectral relaxation method, International Journal of Computational Methods, 16(06), 2019, 1840020.

[32] Rashid, M., Khan, M.I., Hayat, T., Khan, M.I. and Alsaedi, A., Entropy generation in flow of ferromagnetic liquid with nonlinear radiation and slip condition, Journal of Molecular Liquids, 276, 2019, 441-452.

[33] Pordanjani, A.H., Aghakhani, S., Karimipour, A., Afrand, M. and Goodarzi, M., Investigation of free convection heat transfer and entropy generation of nanofluid flow inside a cavity affected by magnetic field and thermal radiation, Journal of Thermal Analysis and Calorimetry, 137(3), 2019, 997-1019.

[34] Mahian, O., Kianifar, A., Sahin, A.Z. and Wongwises, S., Entropy generation during Al2O3/water nanofluid flow in a solar collector: Effects of tube roughness, nanoparticle size, and different thermophysical models, International Journal of Heat and Mass Transfer, 78, 2014, 64-75

[35] Khan, M.I., Qayyum, S., Hayat, T., Waqas, M., Khan, M.I. and Alsaedi, A., Entropy generation minimization and binary chemical reaction with Arrhenius activation energy in MHD radiative flow of nanomaterial, Journal of Molecular Liquids, 259, 2018, 274-283.

[36] Khan, M.W.A., Khan, M.I., Hayat, T. and Alsaedi, A., Entropy generation minimization (EGM) of nanofluid flow by a thin moving needle with nonlinear thermal radiation, Physica B: Condensed Matter, 534, 2018, 113-119.

[37] Ibáñez, G., López, A., Pantoja, J. and Moreira, J., Entropy generation analysis of a nanofluid flow in MHD porous microchannel with hydrodynamic slip and thermal radiation, International Journal of Heat and Mass Transfer, 100, 2016, 89-97.

[38] Thumma, T., Mishra, S., Bég, O., ADM Solution for Cu-CuO-Water Viscoplastic nanofluid ‎transient slip flow from a porous stretching sheet with entropy generation, convective wall temperature and radiative effects, Journal of Applied and Computational Mechanics, 7(3), 2021, 1291-1305.

[39] Shukla, N., Rana, P., Kuharat, S., Anwar Bég, O., Non-similar radiative bioconvection nanofluid flow under ‎oblique magnetic field with entropy generation‎, ‎Journal of Applied and Computational Mechanics, 2021, doi: 10.22055/jacm.2020.33580.2250.

[40] Al-Rashed, A.A., Kolsi, L., Hussein, A.K., Hassen, W., Aichouni, M. and Borjini, M.N., Numerical study of three-dimensional natural convection and entropy generation in a cubical cavity with partially active vertical walls, Case Studies in Thermal Engineering, 10, 2017, 100-110.

[41] Hussein, A.K., Lioua, K., Chand, R., Sivasankaran, S., Nikbakhti, R., Li, D., Naceur, B.M. and Habib, B.A., Three-dimensional unsteady natural convection and entropy generation in an inclined cubical trapezoidal cavity with an isothermal bottom wall, Alexandria Engineering Journal, 55(2), 2016, 741-755.

[42] Lioua, K., Oztop, H.F., Borjini, M.N. and Al-Salem, K., Second law analysis in a three dimensional lid-driven cavity, International Communications in Heat and Mass Transfer, 38(10), 2011, 1376-1383.

[43] Lide, D.R., (Ed.) CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton, FL., 1990.

[44] Das, S.K., Putra, N., Thiesen, P. and Roetzel, W., Temperature dependence of thermal conductivity enhancement for nanofluids, Journal of Heat Transfer, 125(4), 2003, 567-574.

[45] Saikrishnan, P., Roy, S., Non-uniform slot injection (suction) into water boundary layers over (i) a cylinder and (ii) a sphere, International Journal of Engineering Science, 41(12), 2003, 1351-1365.

[46] Das, S.K., Choi, S.U., Yu, W. and Pradeep, T., Nanofluids: science and technology, John Wiley & Sons, New Jersey, 2007.

[47] Brinkman, H.C., The viscosity of concentrated suspensions and solutions, The Journal of Chemical Physics, 20(4), 1952, 571-571.

[48] Bejan, A., Convection Heat Transfer, John Wiley & Sons, New York, 2013.

[49] Ellahi, R., Hassan, M. and Zeeshan, A., Shape effects of nanosize particles in Cu-H2O nanofluid on entropy generation, International Journal of Heat and Mass Transfer, 81, 2015, 449-456.

[50] Arpaci, V.S., Radiative entropy production-lost heat into entropy, International Journal of Heat and Mass Transfer, 30(10), 1987, 2115-2123.

[51] Woods, L.C., Thermodynamics of Fluid Systems, Oxford Univ. Press, Oxford, 1975.

[52] Bellman, R.E., Kalaba, R.E., Quasilinearization and Non-Linear Boundary Value Problems, American Elsevier Publishing Co., New York, 1965.

[53] Varga, R.S., Matrix Iterative Analysis, Springer, Berlin, Heidelberg, 2000.

[54] Abu-Nada, E., Masoud, Z., Hijazi, A., Natural convection heat transfer enhancement in horizontal concentric annuli using nanofluids, International Communications in Heat and Mass Transfer, 35(5), 2008, 657-665.

بی مایند...
ما را در سایت بی مایند دنبال می کنید

برچسب : نویسنده : مهندس نقوی bmined بازدید : 90 تاريخ : چهارشنبه 22 تير 1401 ساعت: 15:56